skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Enhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Solar near-infrared (NIR) selective glazing systems have been proposed by incorporating photothermal effects (PTE) of a nanoparticle film into building windows. From an energy efficiency perspective, the nanoscale PTE forms unique inward-flowing heat by heating up the window interior surface temperature under solar near-infrared, significantly improving the window thermal performance. Also, the PTE-driven solar heat gains are dynamic upon solar radiation and weather conditions. However, the PTE on annual building energy use has not been investigated thoroughly, due to the lack of an accurate and appropriate energy simulation method. In this study, we used the EnergyPlus energy management system to develop a parametric energy model and simulation approach in which a solar-temperature-dependent thermal model was embedded into the parametric energy simulation workflow. Applying this method, we examined the solar near-infrared-dependent PTE-induced thermal performances of glazing systems and their effects on annual heating energy use in representative cold climates (i.e., Zones 4, 5, and 6). The results show that the dynamic model considering the PTE demonstrated more heating energy savings, up to 11.64% in cold climates, as opposed to the baseline model that ignored the PTE. This work presents a method to model and simulate the dynamic thermal performance of windows with PTE. 
    more » « less
  2. null (Ed.)
    With the recent discoveries and engineering solutions emerging in nanomaterials and nanostructures, independent band modulation of solar radiation on building envelopes, including glazing systems, has become increasingly viable as a potential means of improving building energy savings and indoor visual comfort. However, when it comes to the prediction of these new materials’ potential energy performance in buildings, most studies utilize a simple solar irradiance (e.g., global horizontal solar irradiance, direct beam solar irradiance) or a rough estimation of solar infrared (e.g., 50% solar irradiance) as input, which may cause significant errors. Consequently, there is a pressing need for reliable performance estimations of the solar infrared control and response at the building’s scale. To assess this, we need a solar spectral irradiance model, or at least a wideband (visible or infrared) solar irradiance model, as input. To develop this new type of model, one needs to understand the modeling-related key elements, including available solar spectral irradiance datasets, data collection methods, and modeling techniques. As such, this paper reviews the current major measurement methods and tools used in collecting solar spectral irradiance data with a focus on the solar infrared region, identifies the available related resources and datasets that particularly encompass the solar spectral irradiance data with a sufficient wavelength range, and studies existing solar irradiation modeling techniques for building simulations. These investigations will then form the background and backbone for a study scheme of solar infrared radiation modeling and indicate future research paths and opportunities. 
    more » « less
  3. null (Ed.)
    Single-pane windows still account for a large percentage of US building energy consumption. In this paper, we introduced a new solution incorporating the photothermal effect of metallic nanoparticles(Fe3O4@Cu2−xS) into glazing structures to utilize solar infrared and then enhance the window’s thermal performance in winter. Such spectrally selective characteristics of the designed photothermal films were obtained from lab measurements and then integrated into a thermodynamic analytical model. Subsequently, we examined the thermal and optical behaviors of the photothermal single-pane window and compared its overall energy performance with the conventional low-e coated single-pane window, in which typical window properties, dimensions, winter boundary conditions, and solar irradiance were adopted. The numerical analysis results demonstrated that the photothermal window systems could yield 20.4% energy savings relative to the conventional low-e coated windows. This research paves an underlying thermodynamic mechanism for understanding such a nanoscale phenomenon at the architectural scale. From the implementation perspective, the designed photothermal film can be added into the existing single-pane windows for energy-efficient retrofitting purposes. 
    more » « less
  4. Shape memory polymers (SMPs) have attracted significant attention from both industrial and academic researchers, due to their useful and fascinating functionality. One of the most common and studied external stimuli for SMPs is temperature; other stimuli include electric fields, light, magnetic fields, water, and irradiation. Solutions for SMPs have also been extensively studied in the past decade. In this research, we review, consolidate, and report the major efforts and findings documented in the SMP literature, according to different external stimuli. The corresponding mechanisms, constitutive models, and properties (i.e., mechanical, electrical, optical, shape, etc.) of the SMPs in response to different stimulus methods are then reviewed. Next, this research presents and categorizes up-to-date studies on the application of SMPs in dynamic building structures and components. Following this, we discuss the need for studying SMPs in terms of kinetic building applications, especially about building energy saving purposes, and review recent two-way SMPs and their potential for use in such applications. This review covers a number of current advances in SMPs, with a view towards applications in kinetic building engineering. 
    more » « less